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SUMMARY

A model of a central processor (CPU) which services background applica-

tions in the presence of time-critical activity is presented. The CPU is viewed

as an M/M/] queueing system subject to periodic interrupts by a deterministic,

time-critical process. The Laplace transform of the distribution of service

times for the background applications is developed. The use of state-of-the-

art queueing models for studying the background processing capability of time-

critical computer systems is discussed and the results of a model-validation

study which support this application of queueing models are presented.

INTRODUCTION

A time-critical system is one in which the periodic and deterministic pro-

cessing requirements of certain applications must be guaranteed in order that

strict timing constraints can be met. The environment is said to be "hard real-

time" since task deadlines are rigid. Unknown and untimely responses cannot be

tolerated in such systems.

Real-time digital and hybrid simulations of physical systems (refs. ] to 3)

are examples of time-critical applications. Because the time-critical integrity

of these applications must be maintained, a portion of system resources (central

memory, I/O processors, channels, and disks) generally must be fully dedicated

to their use. State-of-the-art computer systems, however, allow the remaining

resources to be used by background batch and interactive applications (ref. 4).

It is the performance of these systems when serving background applications that
will be considered here.

I

Queueing theory has been used to model many aspects of computer systems,

for example, batch and interactive systems, paged memory systems, I/O subsys-

tems, communication networks, and systems with mixedclasses of applications

(refs. 5 to 8). The basis for applying this theory to multiprogrammed computer

systems is the assumption that the population of user tasks, as a whole, behaves

in a stochastic manner. For the normal multiprogrammed environment, this is a

reasonable assumption. However, the deterministic nature of a time-critical

process violates the Poisson assumptions of most queueing models, and it is not

immediately evident that a queueing model can reasonably be applied to the study

of systems which operate in this environment. This application of queueing

models is the subject of this paper.

, SYMBOLS

EB event that server is busy

EBI event that iF _ T < F



EI event that server is idle

ETI event that 0 < T < iF

F time between time-critical interrupts, or frame interval

fraction of F required by time-critical task

_ =-F

T initiation time of virtual service

V virtual service time random variable

W system response time

e = e-PF (I-£)

l average arrival rate of background tasks

CPU processing rate for background tasks

1
p = --

1
pl

(1- £)

overhead time per frame

Notation:

E(X) expected value of X

fx(x) probability density function (pdf) of random variable X

fx (xIY) pdf of X conditioned on Y

X*(s) Laplace transform of pdf of X

CPU MODEL

The CPU (fig. 1) is viewed as a single-server queueing facility in which
a high-priority, time-critical task has immediate access to the CPU and inter-

rupts the servicing of background tasks. The arrival of background tasks is

a Poisson process with an average arrival rate X. The required CPU service
times for these tasks are assumed to be independent and identically distributed

2



Interrupted task I

Backgr°und_ X_--_ H_gItasks __ ]_' _-Departureslv

Queue Interrupt I

; l

I Time-critical I

i task ]

Virtual server

Figure ].- Time-critical CPU model.

random variables from an exponential distribution with an expected service time

_-1. The time-critical task is completely deterministic, unlike preemptive-

priority queueing models or models in which the server is subject to breakdowns
(refs. 9 and 10). This task arrives at a constant frame interval F and

requires the CPU for a constant fraction i of each frame. The time-critical

process and the CPU server are combined to form a virtual server. The objective

is to develop the resulting Laplace transform of virtual service time for the

background tasks.

The virtual service time random variable V includes the required CPU ser-

vice time of the background task and the accumulated holding time that occurs

while the time-critical task is being serviced. The initiation of virtual ser-

vice is independent of the time-critical process. That is, whenever both the

CPU and holding stage are free of a background task, then an arriving background

task can proceed to the holding stage immediately. Now if the time-critical

task is processing, then the background task remains at the holding stage;

otherwise, the background task receives CPU service immediately and no holding
time is incurred.

During the first iF time units of each frame the time-critical task occu-

pies the CPU, while for the remaining time (1 - i)F the CPU is available for

background processing. Since this process is identical for each frame, the

beginning of a frame (the point at which the interrupt occurs) is used as a

point of reference. The random variable T, measured from this reference point,

is the time into the frame that a background task begins to receive CPU service.

It is easy to recognize the similarity between this model and a round-robin

(RR) model, which includes an overhead penalty for exchanging tasks (for example,

refs. 1] to ]3). The RR system divides time into slices known as quantum inter-

vals. Each task, in a cyclic fashion, is assigned a quantum interval and then

exchanged for a new task at the end of the quantum. In practice some amount of

overhead is required in each quantum to perform the task exchange. This over-
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head is equivalent to the time-critical service time iF, whereas the quantum

interval is equivalent to the frame interval F. The primary difference is

that, for the model considered here, virtual service can begin at any point in

the frame, i.e., 0 _ T < F, whereas for the RR model T = 0 when the overhead

is assumed at the beginning of a quantum. Additionally, each task in the cur-

rent model is completed before service on another background task begins.

Suppose that T = 0. If a background task is still processing at the end

of the frame, then there is a probability e that additional service is

required where

C_ = Pr[V > (] - i)F] = e-PF(]-_,) (])

Since the probability that additional service is required is independent of the

amount of service received during past frames (the memoryless property of the

exponential), then the number of frames of service R is a random variable from

the geometric probability density function (pdf),

Pr[R=r] = (_r-] (] _ (_) (r = ], 2, 3, . . .) (2)

During the frame in which a task departs from the system, the task will receive

D units of CPU service, where D is from the truncated exponential pdf,

pe-P x

fD(x) = (0 __<x < (] - i)F) (3)
] - (x

which has a Laplace transform D*(s) given by

A (_Qo (] - e-(S+P) (]-i)F)

Jxe-sx fD(x) dx = (4)
D*(S) = =0 (s + _)(] - e)

In general, however, T can occur in either of two intervals: the time-

critical interval, defined as 0 _ T < iF, or the background interval, defined

as iF _ T < F. Consider first that virtual service begins during the back-

ground interval. Let EBI represent this event. For a task beginning service
in this interval there is an amount F - T of CPU time available in the first

frame. If this is a sufficient amount of processing time, then V has the nor-

malized exponential pdf



_e-_ x
fv(XlEBI) = (0 < x < F - T) (5)

] - e-_(F-T)

with the Laplace transform

(1 - e- (s-p) (F-T))
V* (s IEBI ,V<F-T) = (6)

(s + _/)(1 - e-_(F-T))

A task not completing service in this initial period will be interrupted by the

time-critical process. In that case, the total virtual service time is the sum

of the initial service F - T, an integral number of frames of interrupted ser-

vice (R - ])F, and the last frame of virtual service iF + D. Let

X = (F- T) + (£F + D) (7)

the pdf of which has the Laplace transform

X* (s) = e-s(F-T+£F)D * (s) (8)

since F - T + iF is constant for a given T. Let

Y = (R- ])F (9)

the pdf of which has the Laplace transform

co

Y*(s) = _ er-] (1 _ (_)e-S(r-])F = ] - _ (10)
r=] 1 - c_e-sF

Since X and Y are independent random variables, then

_(1 _ e-(S+p) (]-i)F) (e-S(F-T+IF))
V*(SlEBI,V>F-T ) = X*(s)Y*(s) = (11)

(s + _)(1 - (_e-sF)
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Using

Pr[V>F-T'J = e-IJ(F-T) (12)

and by the law of total probability,

V*(SlEBI) = V*(SlEBI,V>F-T) PrEV>F-T 3 + V*(SlEBI,V__-F-T) (1 - Pr[V>F-T_)

_ _ _] + (e-siF - 1.)(e-____(s+_)(F-T) !I (13)

L Js + _ (1 - ee-sF)

Suppose that virtual service begins during the time-critical interval. Let

this event be ETI. In that case there will be an initial delay of iF - T
before the background interval begins. The virtual service time for this condi-
tion is

V = iF - T + (R - I)F + D (14)

the pdf of which has the Laplace transform

_(1 - e-(S+_) (1-£)F) (e-S(IF-T))
V* (sIETI) = (I5)

(s + _/)(1 - _e-sF)

Now consider the distribution of service time with regard to the number

of background tasks that an arrival finds either queued or in virtual service.

If an arrival finds no background tasks in the system, i.e., an idle virtual

server, then the Laplace transform of virtual service will be either V*(SlEBI )

or V*(SlETI), depending on the point of arrival. Let EI represent the idle
virtual server condition. Removing the arrival-time condition, then

_t IF St F
V*(sJE I) = V*(SlETI) fT(t) dt + V*(SlEBI) fT(t) dt

=0 =iF

_(1 - i) Ksl s p2 21

- + -- (]6)
s +_ F (s+ _)



where

(l - _e-sF(l-Z)) (l - e-sFZ)
Ks = (l7)

l - (_e-sF

and where

]

fT(t ) = - (]8)
F

because the distribution of interarrival times from a Poisson stream is known to

be uniform. (See ref. ]4, pp. 64 to 65, for a proof.) However, if the arrival

finds a busy virtual server, denoted as the event EB, then the virtual service

of this arrival will begin at the departure point of the previous background

task. Now since departures can only occur during the background interval, then

an arrival to a busy server will always receive service from the distribution

having a Laplace transform V*(SlEBI). Removing the service initiation-time
condition results in

= V*(SlEBI ) fT(tlEBI) dt = (]9)
V*(SlEB) _ =£F s + _ (] - £)(s + _/)2

where

]

fT(tlEBI ) = (20)
(]- £)F

because interdeparture times of an exponential distribution are uniformly dis-

tributed and where Ks is given by equation (]7).

Clearly then, the single-server queueing facility subjected to the inter-

rupts of a time-critical process gives rise to a situation in which the first

background arrival to initiate a busy period (having found an idle server)
receives service from a distribution having a Laplace transform given by

V*(slEI), whereas all other arrivals receive service from a distribution having
a Laplace transform given by V*(SlEB). Such a generalization of the M/G/]

queueing system has been studied by Welch (ref. ]5). Welch shows that the



expected system response time E(W), which includes both queue wait time and

service time, is given by

IE(v2)

_(w)=_(v).211- _(v)](]- _r_(vIEB)- _cvl_i_]) c2])

where E(V) and E(V 2) are the first and second moments of service time,

respectively, and E(VJEB) and E(VJEI) are the expected values of the condi-

tioned service times. Note that when E(VJE B) = E(VJEI) the well-known
Pollaczek-Khinchin formula for the M/G/] queue is obtained. The Laplace trans-

form of service time V*(s) is given by

V*(s) = V*(S. EB) Pr[EB] + V*(slEi) <1 - Pr[EB] > (22)

where

)kE(VIEI)

Pr[EB] : ] _ I[E(VIEB ) _ E(VIEI)_ (23)

is the probability of finding a busy server. Using the transforms given by

equations (16) and (19), then

A dV* (slEB) I = ]E(VIEB) = ds s=0 P(] - _) (24)

Similarly,

1 +e I

E(V IEI) = (25)
p (I - _)

where

_21]j.F(]',_ - _)(1 + C_) - 2(1 - _U'_
eI = (26)

2(I - _)
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Thus,

I

E(V) = + AE(V) (27)
_(1 - £)

where

e 1 (1 - P')
AE (V) = (28)

_(I - £)(I + P'eI)

and

X
p, = (29)

(1 - £)

The second moment of virtual service time is obtained as follows:

A d2V*(SlEB) I 2 2ei
E (V2 IEB)

= I = + (30)ds s=0 u,l-IJ'1 _ £)q2j Is(1 - £)

where eI is given by equation (26). Similarly,

2

E (V21EI)' = + e2 (31)

_

where

2UFi 2(1 - Z)2(I + _) 2(UF) 2Z2(1 - £)2_ (_F)2£3(I - I) 2
e2 = + +

I - _ (1 _ e)2 3

+ 4Z3 - 612 (32)



Thus,

= 2

E(V2) = E(V21EB) PrEEB] + E(V21EI) (] - Pr[EB] 1 [_/(] _ i)32 + L_E(V2) (33)

where

e2 + p' (1 + eI) (2eI - e2)(1 + p'el)
AE (V2) = (34)

-  )32

Finally, from equation (21), the expected system response time is

I

E(W) = + tm(W) (35)
U(I - £)(1- p')

where

I _E (V2)
_E(W) = AE(V) + (36)

2(1 - p')

TIME-CRITICAL CPU ALLOCATION

The variables for this model are set by the requirements of the background

workload and the time-critical process for a particular CPU and are presumably
fixed. However, there is some flexibility in the allocation of CPU service to

the time-critical task. In a practical sense, this allocation is constrained by
the time in which results of computation must be available for transfer to out-
put devices, i.e., the task deadline. It shall be assumed here that the dead-

line time is the same as the frame time, so that once an interrupt occurs there

is no constraint on time-critical CPU allocation as long as £F units of pro-

cessing time are realized by the process during each frame. We may consider,

then, subdividing F into n equal quantum intervals of length Q = F/n and

in each of these quantums allocating IQ units of processing time for the time-

critical process and the remaining time for background processing. Also assume

now that a fixed overhead time _ is incurred during each quantum due to the

alternation of service between the time-critical task and the background task.

This overhead is expressed as some fractional portion i_ of the frame, i.e.,

]0



The effect of this action is that the time-critical load is more uniformly
distributed over the frame, thus changing the characteristics of virtual ser-

vice. The effects of this load-leveling action on the system response time can

be calculated by replacing F with F/n and by adding the overhead n£_, where
n£_ = G/Q, to the required time-critical load £. For example, suppose

£_ = 0.005, £ = 0.500, and p = I/p = 0.200. The percentage improvement in
response time due to load leveling, defined as

100[E(Wln=l) - ECWIn)]
Response-time improvement =

E (WIn=l )

(n = l, 2, 3, . . .) (37)

is shown in figure 2 for several values of the product _F.

It is apparent that for smaller values of _F the overhead associated with

task switching is the dominant factor and immediately degrades system perform-

ance. However, when the time-critical frame is large compared with the average

II



CPU service time for background tasks (large _F), then load leveling (to a

point) would indeed improve system performance. This model should prove help-
ful in examining that proposition for a given system. Note that, for this par-

ticular set of parameters and for _F equal to 4 or ]0, simply dividing F

into two equal segments produces nearly optimal results.

APPLICABILITY OF STATE-OF-THE-ART QUEUEING MODELS

Consider now the feasibility of using existing queueing models to study

time-critical systems. One advantage of this capability is the fact that soft-
ware tools (refs. 7, ]6, and ]7) have been developed for these models which

greatly simplify the process of model development and analysis. The model of

Baskett, Chandy, Muntz, and Palacios (ref. ]8) is a summarization and generali-
zation of the results of many researchers and is representative of the state

of the art in applying queueing theory to computer systems. This model allows

one to distinguish between classes of applications, for example, batch and

interactive, and can be used to study open (exogenous arrivals), closed (no

exogenous arrivals), and mixed (closed with respect to some classes and open

to other classes) networks of queueing facilities. Four different types of
service facilities can be used to represent the various computer resources

(CPU's, disks, terminals, etc.). The service distributions for these resources

need only have rational Laplace transforms. If scheduling is first come, first
served, however, the distribution must also be exponential. While this is a

very general model, it does not provide a solution for preemptive-resume prior-

ity scheduling. Thus, if the time-critical process is modeled explicitly as a

separate customer class, then this model is not appropriate, since preemptive-

resume priority scheduling would be required. (Approximation techniques, how-

ever, have been developed for this scheduling discipline and have been used in

some models, e.g., ref. 7.)

However, for the class of computer system considered here, it is proposed

that it is not necessary to explicitly represent the time-critical task in order

to study the performance of the background-processing system. As previously

mentioned, because of stringent timing constraints, it is generally necessary

to totally dedicate a portion of system resources to the time-critical appli-
cations. Such a system can be modeled as shown in figure 3. Conceptually the

system is viewed as two machines: a background machine and a time-critical
machine, each sharing the CPU but otherwise using mutually exclusive sets of

resources. The performance of the time-critical machine is deterministic and

the objective is to model the background machine.

The alternative to an explicit representation of the time-critical task

is to implicitly include the effects of this task on the performance of the

background machine by using the virtual service time distribution developed

previously. However, when an exponential server is subjected to a time-
critical load, the resulting service distribution is not exponential, nor is

its Laplace transform (eq. (22)) rational. An approximation for this distri-
bution is in order. Again, consider the magnitude of the product _F. A small

product represents the average CPU service time for background tasks taking

]2



Background tasks I

I Non-time-critical I
resources

row-

Interrupt

I Time-critical I
resources

_.--Time-critical task

Figure 3.- A time-critical system with a background-

processing capability.

place over many frames or, equivalently, a small F compared with the required

CPU service time for background tasks. Referring to equations (26) and (32),
it can be shown that

lim_F+ 0 e] = 0

and

lim_F.0 e2 = 0

so that bE(V) in equation (28) and AE(V 2) in equation (33) will also

approach zero as the frame becomes small compared with the required CPU service

time. The result is that for small _F, an exponential server with parameter
_, operating under a time-critical load £, appears to the input stream as an

exponential server with parameter _(] - £). Thus, two independent processors
emerge: a time-critical processor with a service rate of £ times the actual

CPU service rate, and a background processor with a service rate of ] -

times the actual CPU service rate. The total CPU utilization is the weighted
utilization of each of these processors, that is,

CPU utilization = (] - i)U B + £UTC (38)

]3



where UB and UTC are the utilization of the background and time-critical

processors, respectively. Note that if S is the service rate of the actual
CPU (used a fraction i of each frame by the time-critical task), then the

time-critical processor with a service rate of S£ must be utilized 100 per-

cent, so that UTC = 1. Note also that the actual background CPU utilization is

obtained by multiplying the background processor utilization UB (obtained from

a queueing model) by the factor ] - £.

This approximation is intuitively appealing and immediately offers a means

for making use of existing queueing models. That is, one assumes an exponential

server with the average service rate modified by the time-critical load. The

accuracy of this approximation to the service distribution can be examined by

forming the following:

] O0 AE (V)
First moment error = . (39)-

]00 AE (V2)
Second moment error = (40)

-

These are shown first as a function of i and p' for _F = ] in figures 4
and 5. It is found that the maximum errors occur at the midregion of i. Then,

for i = 0.5, the above errors are shown in figures 6 and 7 as a function of

_F for several values of p'. These latter figures, then, show the maximum

errors that can be expected for a given value of the product _F as a result
of the approximate service distribution. Clearly, the magnitude of the product

_F is a good indicator of the accuracy of the approximation.

ERROR

i

£

!

P

Figure 4.- First moment error. _F = 3.
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ERROR

p'

Figure 5.- Second moment error. _F = ].

30i--

0,:.i

ua

p, = .5

_10 _---

b.. 0 _- p' = .9
0 2 II 6 8 I0

Figure 6.- First moment error. £ = 0.5.
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Figure 7.- Second moment error. £ = 0.5.

EXPERIMENTAL RESULTS

The results of the previous section were applied to a performance evalua-

tion study of a digital simulation facility located at the NASA Langley Research

Center in Hampton, Virginia (ref. 19). This facility, is capable of supporting

batch, interactive, and time-critical applications. However, in order to run

controlled experiments, only the batch and time-critical capabilities were used.

System measurements determined that the average batch CPU service time was

]2.20 msec. Because the majority of simulation applications used a frame time

of 3].25 msec, the resulting _F of 2.6 indicated that the average CPU service

rate for a time-critical load i could reasonably be formulated as

_(1) = 12.2-I (I - i) (41)

A closed queueing model was developed for the batch processing system.

Controlled experiments were made in a purely batch environment in order to cal-
ibrate and validate the model. Then a time-critical task was introduced into

the system and the experiments were repeated. The CPU service rate of equa-

tion (41) was used and degree of multiprogramming of the model (average number
of circulating batch tasks) was modified to account for the dedicated use of

central memory by the time-critical task. A comparison of measured results and

model results for CPU utilization and CPU queue length is shown in the follow-

ing table. As can be seen, once a calibrated batch model was obtained, the

effects of the time-critical task were accurately predicted by the model.

16



Time-critical Batch CPU utilization, % Average CPU queue length
CPU utilization .....

£, % (] - _) × model Measured Model Measured

0 (Calibration) 60.9 60.5 ].5 ].3

]0.0 59.7 59.3 ].7 ].6

30.0 54.4 53.8 2.6 2.2

50.0 44.7 45.0 3.9 3.5

70.0 29.5 29.3 5.8 5.5

CONCLUDING REMARKS

The Laplace transform of the service distribution for an M/M/] queueing

system subject to the periodic interrupts of a deterministic time-critical pro-

cess has been developed. By using this distribution, the benefits of uniformly

distributing the load of the time-critical process can be evaluated and weighed
against the increased overhead that is incurred due to the alternation of ser-

vice between the time-critical task and the background task.

The Laplace transform of this distribution does not have a rational form,

so state-of-the-art network queueing models are not directly applicable. How-

ever, if the time between interrupts is small compared with the average CPU ser-
vice time of the background tasks, then an approximate service distribution is

an exponential distribution, with the original service rate multiplied by the

fraction of processing time available to background tasks. This suggests that

for an appropriate range of model parameters, current queueing models can rea-

sonably be extended to the study of background processing in time-critical

environments. Experimental results are reported which support this application.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

September ]4, ]979
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